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ABSTRACT

Stevens, C.M. 1995. Carbon-13 Isotopic Abundance and Concentration of Atmospheric Methane for
Background Air in the Southern and Northern Hemispheres from 1978 to 1989. ORNL/CDIAC-80,
NDP-049. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge,
Tennessee, U.S.A. 60 pp.

This document presents atmospheric CH, concentration and carbon-13 isotopic abundance data
derived from air samples collected over the period 1978—1989 at globally distributed clean-air sites. The
data set comprises 201 records, 166 from the Northern Hemisphere and 35 from the Southern
Hemisphere. The air samples were collected mostly in remote rural or marine locations, far from large
sources of CH,, and are considered representative of tropospheric background conditions. The air
samples were processed by isolation of CH, from air and conversion to CO, for isotopic analysis by
isotope-ratio mass spectrometry. These data represent one of the earliest records of carbon-13 isotopic
data for atmospheric methane and have been used to refine estimates of CH, emissions, calculate annual
growth rates of emissions from changing sources, and provide evidence for changes in the rate of
atmospheric removal of CH,.

The data records consist of sample collection date; number of samples combined for analysis;
sampling location; analysis date; CH, concentration; carbon-13 isotopic abundance; and flag codes to
indicate data outliers, repeated analyses, and other information. The data are available free of charge as a
numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP consists
of this document and a floppy diskette (or other medium, upon request) containing machine-readable
files. This document provides a complete listing of the atmospheric CH, concentration and carbon-13
isotopic abundance data. This document also contains retrieval program listings (in FORTRAN and
SAS® languages), furnishes information on analysis methods, defines limitations and restrictions of the
data, and provides a reprint of a pertinent paper from the literature.

Keywords: air samples, atmospheric methane, carbon-13, global distribution, isotope, mass spectrometry,
trends
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PART1I

OVERVIEW






1. BACKGROUND AND SOURCE INFORMATION

Atmospheric methane (CH,) may become an increasingly important contributor to global warming in
future years. Its atmospheric concentration has risen, doubling over the past several hundred years, and
additional methane is thought to have a much greater effect on climate, on a per molecule basis, than
additional CO, at present day concentrations (Shine et al. 1990). The causes of the increase of
atmospheric CH, have been difficult to ascertain because of a lack of quantitative knowledge of the
fluxes (i.e., net emissions) from the numerous anthropogenic and natural sources. The goal of CH,
isotopic studies is to provide a constraint (and so reduce the uncertainties) in estimating the relative
fluxes from the various isotopically distinct sources, whose combined fluxes must result in the measured
atmospheric isotopic composition, after the fractionating effect of the atmospheric removal process is
considered. In addition, knowledge of the spatial and temporal changes in the isotopic composition of
atmospheric CH,, along with estimates of the fluxes from some of the major sources, makes it possible to
calculate growth rates for sources whose temporal emissions trends would be difficult to measure
directly. A detailed discussion of the use of carbon isotopic data to elucidate CH, source fluxes and
growth rates is given in Stevens (1993), a reprint of which is included as Appendix B.

The atmospheric CH, concentration and carbon-13 isotopic abundance data presented in this package
are derived from air samples collected over the period 1978—1989 at globally distributed clean-air sites.
The data set (presented in its entirety in hard copy form as Appendix A) comprises 201 records, 166 from
the Northern Hemisphere and 35 from the Southern Hemisphere. The air samples were collected mostly
in remote rural or marine locations, far from large sources of CH,, and are considered representative of
tropospheric background conditions. Sampling locations in the Northern Hemisphere included 32 Pacific
Ocean sites and 11 land-based sites. In the Southern Hemisphere, locations included 18 Pacific Ocean
sites and 4 land-based sites. At many locations, air samples were collected by C.M. Stevens and his
colleagues. For some Southern Hemisphere and Pacific Ocean measurements, and all measurements at
Cape Meares, Oregon, samples were obtained from stored air cylinders contributed by R.A. Rasmussen
from the sample bank at the Oregon Graduate Institute of Science and Technology (formerly the Oregon
Graduate Center), Portland, Oregon, U.S.A.

These data represent one of the earliest records of carbon-13 isotopic measurements for atmospheric
methane at globally distributed clean-air sites. Additional information, including measurements of the
isotopic composition of CH, sources, estimates of the atmospheric lifetime of CH,, measurements of
carbon-14 abundances in atmospheric CH,, and some CH, source flux estimates derived from emissions
inventories, are provided in Stevens (1993). Together with these additional data, the atmospheric *CH,
data presented in this package have been used to refine estimates of the global CH, fluxes from
combined rice and cattle production and from biomass burning, to calculate growth rates in CH, fluxes
from biomass burning in the Southern Hemisphere and from natural wetlands in the Northern
Hemisphere, and to provide evidence of changes in the rate of the atmospheric removal process (Stevens,
1993).

2. METHODOLOGY
Sampling Techniques and Conditions

The sampling in both hemispheres occurred in two main phasés:




Phase 1: Samples collected during 1978-83 were, with few exceptions, obtained from the air sample
bank of the Oregon Graduate Center in collaboration with R.A. Rasmussen. The samples in the bank had
been stored from 1 to 5 years in cleaned and treated stainless steel cylinders of various sizes
(approximately 2 to 30 liters) and at various high pressures (up to 25 atmospheres). These cylinders were
shipped to Argonne National Laboratory and then transferred by expansion to atmospheric pressure into
33-liter evacuated stainless steel cylinders (untreated WWII-surplus oxygen cylinders) of accurately
known volume and analyzed within 1 to 2 days. The air in these stored samples had been collected either
at sea or at land stations upwind of any urban or anthropogenic sources of CH,. During this period, some
of the Northern Hemisphere samples were collected at the Cape Meares station of the Oregon Graduate
Center; the others were taken at sea in the Pacific. Beginning in 1983, samples were also collected in
Northern Illinois. The average 6°C values of 36 samples collected in Northern Illinois during 1983 were
compared with the average of seven samples collected at Cape Meares during the same year and were
found to agree within 0.01 per mil.

Phase 2: From 1984 through 1989 all samples were collected in Argonne 33-liter evacuated stainless
steel cylinders (untreated WWII-surplus oxygen cylinders), either at rural sites in Northern Illinois or, in
the case of the Southern Hemisphere samples, at rural sites upwind of Canberra (Australia), or at the
shore near the NOAA observatory in American Samoa. A special set of analyses was carried out in 1988
on four samples which had been collected in 1978 and analyzed in 1983, in order to compare results after
another five years of storage. The results of these reanalyses are found in the data set (see data for
samples collected at Cape Meares, dated 4-4-78, 4-7-78, 10-5-78, and 10-5-78).

The Illinois samples were collected mostly in the afternoon on days with winds in excess of 10 mph.
Collections in the morning were avoided because of overnight temperature inversions. Typically, only
one flask sample was collected at each site. An exception occurred on 9-8-88, when six different samples
in six different flasks were collected simultaneously and analyzed at intervals over a six week period in
order to ascertain the integrity of samples stored in Argonne cylinders. Multiple samples were combined
only when it was necessary to combine air stored in several small cylinders (obtained from the Oregon
Graduate Institute) in order to make enough for the 33 liters required for isotopic analysis. Multiple
analyses from a single flask occurred in several cases, as in the samples with collection times denoted
11-00-81 (Tasmania) and 05-00-82 (Pacific). (Days denoted as 00, as in 11-00-81, indicate that the exact
day of sampling is not known.)

Analytical Methods

Air samples were processed by the oxidation of the CH, in the air to CO, after quantitative removal of
atmospheric CO, and CO, from oxidation of atmospheric CO by Schutze reagent. (The experimental
apparatus used to carry out this procedure is shown schematically in Figure 1.) The CO, from CH,
oxidation was quantitatively separated from the air by distillation and analyzed isotopically. Details of
the experimental procedures are as follows.

The air pressure in the sampling flask was first measured, then the flask was connected to the air
intake line and air was passed through a low-efficiency, high-flow liquid N, trap to remove water, most
of the atmospheric CO,, and non-methane hydrocarbons. Next, the samples were passed through
molecular sieve 13X and another liquid N, trap of high efficiency to further remove any CO, present.
The air stream was then passed through a granular Schutze reagent made up of 1,O; on silica gel, by
which the atmospheric CO was oxidized to CO,. Another liquid N, trap then removed this CO,. The gas
was then passed through an electrically heated quartz combustion tube containing platinized silica, which
quantitatively oxidizes the CH, to CO, and H,O, which are then trapped in high-efficiency, liquid N,
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traps. The air in the original cylinder was passed through this treatment until the pressure was reduced to
approximately 5% of atmospheric pressure. The flow rate was maintained at a constant flow of
approximately 0.5 liters/min by adjustment of the valve on the cylinder until the valve was wide open
and the pressure was reduced to approximately 25% of atmospheric pressure; the flow then gradually
decreases until terminated at 5% of atmospheric pressure. The line beyond the CH, combustion section
was pumped to a good vacuum and then isolated. The trap with the CO, and H,0 from CH, oxidation
was warmed with a hot water bath, and the CO, and H,O were transferred with a controlled helium flow
through a trap cooled by dry ice/methanol to remove the H,O. The CO, was condensed in a trap in the
micromanometer section, which was then pumped to a good vacuum and isolated. The trap containing
the CO, from CH, oxidation was then warmed, and the CO, pressure was measured with a precision of
+0.3%. Finally, the CO, was distilled to a sample tube for isotopic analysis on a Consolidated-Nier
isotope-ratio mass spectrometer. The concentration of CH, was calculated stoichiometrically with a
precision of £0.5%. The 6 C values of the CO, samples were measured with a precision of +0.05 per
mil. A correction of -0.11 per mil was made for an impurity of N,O produced in the combustion train.
The overall uncertainties in the analyzed values of CH, concentration and isotopic composition are
estimated to be 0.02 parts per million (ppm) for the concentration values, 0.2 per mil for isotopic values
prior to 1985, and 0.1 per mil for isotopic values after 1985.

3. LIMITATIONS AND RESTRICTIONS

The isotopic results for the samples of stored air from 1978 through 1983 were all analyzed during
1982-83 in random order and using a laboratory isotopic standard which had been accurately measured
at -24.8 per mil. This standard had been used for many years and was replenished without fractionation
2-3 times per year. The order of processing and analysis of samples was random for both the hemisphere
of origin and the chronology of collection; therefore, it is unlikely that there are any systematic errors in
the set of samples from this period. The same cannot be said for the samples from 1984 through 1989.
During this period, new isotopic working standards were started, having a value nearly the same as the
isotopic composition of the CH, samples in order to reduce the mass spectrometer error resulting from
measuring large differences, sometimes called the "memory" effect. There may have been some drift of
the value of the isotopic standard due to fractionation while it was consumed during the analysis process,
as these standards were not prepared in large amounts as had been the case for the standard used for the
earlier samples. The repeat analyses done in 1988 on second aliquots of four of the stored air samples
showed an average difference of +0.3 per mil compared to the first analysis done five years earlier using
the -24.8 per mil isotopic standard. This difference is attributed to background CH, contamination from
the cylinder during storage. The analyses of all stored air samples were therefore corrected by -0.067 per
mil per year of storage time between the collection and analysis dates (see column 9 of the data set,
included as Appendix A). Another check of the last isotopic standard used for the 1988-89 samples
indicated a possible drift of about +0.5 per mil.

The most important feature of the isotopic data is the measured interhemispheric trend, which is
independent of the individual hemispheric trends because the analyses were done with the same standard
at more or less the same time period. Mathematical analysis of the hemispheric trends shows that the
difference of the hemispheric trends is the most important term in the calculation of the trends of the
fluxes in each hemisphere. The average trend of each hemisphere is of secondary importance in the
analysis. Hence, systematic errors such as fractionation of the isotopic standard would have only a small
effect on the final application of the results.



Additional uncertainties may affect the ability to compare isotopic ratios in atmospheric CH, from
clean-air sites with isotopic ratios from the various source types for the purpose of resolving
uncertainties in the global methane budget. Perhaps the largest uncertainty is the determination by
inventory estimates of the globally averaged isotopic ratio of individual sources such as biomass burning
or methane from ruminants. This uncertainty arises because the CH, from these sources is made up of
contributions of uncertain relative amounts globally from metabolically distinct plant types (i.e., C; and
C, plants), which have large isotopic variations. The globally averaged isotopic composition of CH,
sources from coal mining and natural gas losses are subject to large uncertainties of +4%o because of
large variations among the many individual sources.

4. DATA CHECKS PERFORMED BY CDIAC

The Carbon Dioxide Information Analysis Center (CDIAC) endeavors to provide quality assurance
(QA) of all data before their distribution. To ensure the highest possible quality in the data, CDIAC
conducts extensive reviews for reasonableness, accuracy, completeness, and consistency of form. While
having common objectives, the specific form of these reviews must be tailored to each data set; this
tailoring process may involve considerable programming efforts. The entire QA process is an important
part of CDIAC's effort to assure accurate, usable data for researchers.

For the atmospheric methane concentration and carbon-13 isotopic abundance data, the QA procedure
consisted of the following:

1. The format of all information was checked to ensure consistency throughout each data record.
2. Data values were examined for reasonableness, absence of typographical errors, and absence of outliers.

No errors or inconsistencies of the types described above were found in the atmospheric methane
concentration and carbon-13 isotopic abundance data received by CDIAC. All data values in the file distributed
by CDIAC are identical to those received from C.M. Stevens. However, in order to enhance their value and their
ease of use, the data records were reformatted and appended in the following way:

1. The latitude and longitude of each sampling site, which were absent for most locations in the original
data set, were obtained from C.M. Stevens and appended to each data record.

2. The conventions for missing values and repeated analyses were altered in order to create a consistent
format for all data records. New flag codes were created to identify any of the following: (1)
uncertainties in the analysis date, (2) records that represent repeated measurements, and (3) records that
represent averages of two or more previous measurements.



5. HOW TO OBTAIN THE DATA
This documentation and the data described herein are available from:

Carbon Dioxide Information Analysis Center
Oak Ridge National Laboratory
Post Office Box 2008
Oak Ridge, TN 37831-6335, U.S.A.
Telephone (615) 574-3645 or (615) 241-4851

The following citation should be used for referencing this archive and/or this documentation report:

Stevens, C.M. 1995. Carbon-13 Isotopic Abundance and Concentration of Atmospheric Methane for
Background Air in the Southern and Northern Hemispheres from 1978 to 1989. ORNL/CDIAC-80,
NDP-049. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge,
Tennessee, U.S.A.
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1. FILE DESCRIPTIONS
Filename: ndp049.des

This file contains a detailed description of both the data set and the digital data file. It is intended to serve as
a digital version of Sects. I-1-I-6 and II-1 of this printed document (figure excluded).

Filename: ndp049.dat

This 21.5 kB file presents 201 records (166 records from Northern Hemisphere sites and 35 records from
Southern Hemisphere sites) of atmospheric methane concentrations and carbon-13 isotopic abundances from
background (clean-air) samples collected at globally distributed sites from 1978 through 1989.

Each data record presents the following variables: sample collection date; number of samples combined for
analysis; sampling location (site name, latitude, and longitude); analysis date; CH, concentration; carbon-13
isotopic abundance (uncorrected and corrected); and flag codes to indicate outliers, repeated analyses of a
sample, and other information. The file can be read by using the following FORTRAN code:

C FORTRAN data retrieval routine to read and write the file named
C "ndp049.dat".
C
C Unit 1 is input.
C
CHARACTER NSAMP, LOCN*27, LAT*9, LON*11, AFLAG, OFLAG, AVCODE*2
INTEGER CMONTH, CDAY, CYEAR, AMONTH, ADAY, AYEAR
REAL CONC, C13MEAS, C13CORR
OPEN (UNIT=1, FILE='ndp049.dat"')
READ (1,10) CMONTH, CDAY, CYEAR, NSAMP, LOCN, LAT, LON, AMONTH,

2 ADAY, AYEAR, AFLAG, CONC, C13MEAS, OFLAG, C13CORR,
3 AVCODE
10 FORMAT (//////12,1X,12,1X,I2,2X,Al,2X,A26,2X,A9,2X,All,2X,I2,1X,
2 I2,1%X,12,1X,A1,2X,F5.3,2X,F6.2,1X,A1,2X,F6.2,1X,A2)
20 READ (1,30,END=99) CMONTH, CDAY, CYEAR, NSAMP, LOCN, LAT, LON,
2 AMONTH, ADAY, AYEAR, AFLAG, CONC, C13MEAS,
3 OFLAG, C13CORR, AVCODE
30 FORMAT (I2,1X,I2,1X,IZ,2X,A1,2X,A26;2X,A9,2X,A11,2X,I2,1X,12,1X,
2 I2,1X,A1,2X,F5.3,2X,F6.2,1X,A1,2X,F6.2,1X,A2)
GO TO 20
99 STOP
END

The data can also be read by using the following SAS® code:

* SAS data retrieval routine to read and write the file named

"ndp049.dat";

% o
14

DATA NDP049;
INFILE 'ndp049.dat’;

11



IF _N =1 THEN INPUT ////// CMONTH 1-2 CDAY 4-5 CYEAR 7-8 NSAMP $ 11
@14 LOCN $CHAR26. @42 LAT SCHARS. @53 LON $CHAR11l. AMONTH 66-67
ADAY 69-70 AYEAR 72-73 AFLAG $ 75 @78 CONC 5.3 @85 C1l3MEAS 6.2
OFLAG $ 92 @95 C13CORR 6.2 AVCODE $ 102-103;

ELSE INPUT CMONTH 1-2 CDAY 4-5 CYEAR 7-8 NSAMP $ 11 @14 LOCN $CHAR26.
@42 LAT $CHARS. @53 LON $CHAR1l. AMONTH 66-67 ADAY 69-70 AYEAR 72-73
AFLAG $ 75 @78 CONC 5.3 @85 C13MEAS 6.2 OFLAG $ 92 @95 C13CORR 6.2
AVCODE $ 102-103;

RUN;

where

CMONTH

CDAY

CYEAR

NSAMP

LOCN

LAT

LON

AMONTH

ADAY

AYEAR

AFLAG

CONC

CI3MEAS

is the numeric month of the year in which the air sample was collected;

is the numeric day of the month on which the air sample was collected;

is the final two digits of the year (since 1900) in which the air sample was collected;

is the number of samples combined from different locations for a single analysis;

is a descriptive character string consisting of (1) the location of the sampling site and, in
some cases, (2) the sample number(s), denoted as one or more numbers following a "#" sign
and referring to the identity of the stored air sample(s) contributed from the sample bank at
the Oregon Graduate Institute of Science and Technology, Portland, Oregon, U.S.A., by

R.A. Rasmussen;

is the estimated latitude (or range of latitudes) of the sampling site(s), given in decimal
degrees;

is the estimated longitude (or range of longitudes) of the sampling site(s), given in decimal
degrees;

is the numeric month of the year in which the air sample was analyzed;

is the numeric day of the month on which the air sample was analyzed;

is the final two digits of the year (since 1900) in which the sample was analyzed;

is a one-character flag code providing additional information about the sample analysis: 'R’
— entry represents one of two or more repeated analyses carried out ori the same air
sample; 'C'— identifies samples where the actual date of analysis is not given but was
within one week of the date of collection;

is the CH, concentration in the air sample, given in parts per million (1 x 10°) by volume;

is the measured &2C (per mil), corrected by +0.10 per mil for N,O contamination but
uncorrected for water vapor contamination;

12



OFLAG is a one-character flag code denoting values of C1I3MEAS that aré considered as outliers

and not included in any subsequent averages; the symbol for the flag code is "*";
C13CORR is a corrected value of C (per mil), calculated only for samples stored for a considerable
time before analysis; values represent an addition of ~0.067 per mil per year for background
contamination (from the cylinder walls) that accumulated between the collection and
analysis dates;
AVCODE is a two-character code denoting an entry whose C13CORR value is an average of those of
the previous 2 to 5 entries [i.e., the immediately preceding entries containing AFLAG
values of 'R (excluding outliers, denoted by OFLAG="*")]: A2, A3, and AS signify entries
representing averages of 2, 3, and 5 previous entries, respectively.

Stated in tabular form, the contents include the following.

Variable Variable Starting Ending
Variable type width™ column column
CMONTH Numeric 2 1 2
CDAY Numeric 12 4 5
CYEAR Numeric 12 7 8
NSAMP Character Al 11 11
LOCN Character A26 14 39
LAT Character A9 42 50
LON Character All 53 63"
AMONTH Numeric 2 66 67
ADAY Numeric 12 69 70
AYEAR Numeric 12 72 73
AFLAG Character Al 75 75
CONC Numeric F5.3 78 82
CI3MEAS Numeric F6.2 85 90
OFLAG Character Al 92 92
CI3CORR Numeric F6.2 95 100
AVCODE Character A2 102 103

* Missing values for numeric variables are represented as follows — CMONTH, CDAY, CYEAR,
AMONTH, ADAY, AYEAR: 00; CONC: 9.999; C13MEAS, C13CORR: 999.99. Missing values for
character variables NSAMP, AFLAG, OFLAG, AVCODE) are represented as blanks.

** Values for variable width are entered as FORTRAN 77 format codes.

13
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Filename: ndp049.for

This file contains a FORTRAN 77 data retrieval routine to read and write the file "ndp049.dat". The

following is a listing of this program. For additional information regarding variable definitions and format
statements, please see the file description for "ndp049.dat" on pages 11-13.

oNeNrNeNeNeY!

FORTRAN data retrieval routine to read and write the file named

"ndp049.dat®.

Unit 1 is input.
Unit 2 is output.

CHARACTER NSAMP, LOCN*27, LAT*9, LON*11l, AFLAG, OFLAG, AVCODE*2
INTEGER CMONTH, CDAY, CYEAR, AMONTH, ADAY, AYEAR

REAL CONC, C13MEAS, C13CORR

OPEN (UNIT=1, FILE='ndp049.dat’)

OPEN (UNIT=2, FILE='output')

READ (1,10) CMONTH, CDAY, CYEAR, NSAMP, LOCN, LAT, LON, AMONTH,

2 ADAY, AYEAR, AFLAG, CONC, C13MEAS, OFLAG, C13CORR,
3 AVCODE '
10 FORMAT (//////I2,1%X,I2,1X,I2,2X,A1,2X,A26,2X,A9,2X,A11,2X,1I2,1X,
2 I2,1X,I2,1X,A1,2X,F5.3,2X,F6.2,1X,A1,2X,F6.2,1%X,A2)
20 WRITE (2,30) CMONTH, CDAY, CYEAR, NSAMP, LOCN, LAT, LON, AMONTH,
2 ADAY, AYEAR, AFLAG, CONC, C13MEAS, OFLAG, C13CORR,
3 AVCODE
30 FORMAT (I2.2,1X,I2.2,1X,I2.2,2X,A1,2X,A26,2X,A9,2X,A11,2X,I2.2,
2 1X,I12.2,1X,I12.2,1X,A1,2X,F5.3,2%X,F6.2,1X,A1,2X,F6.2,1X,
3 A2)
READ (1,40,END=99) CMONTH, CDAY, CYEAR, NSAMP, LOCN, LAT, LON,
2 AMONTH, ADAY, AYEAR, AFLAG, CONC, C13MEAS,
3 OFLAG, C13CORR, AVCODE
40 FORMAT (I2,1X,I2,1X,I2,2X,Al,2X,A26,2X,A9,2X,A11,2X,12,1X,I2,1X,
2 I2,1X,31,2X,F5.3,2X,F6.2,1X,A1,2X,F6.2,1X,A2)
GO TO 20
99 CLOSE (1)
CLOSE (2)
STOP
END
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Filename: ndp049.sas

This file contains a SAS® data retrieval routine to read and write the file "ndp049.dat". The following is a
listing of this program. For additional information regarding variable definitions and format statements,
please see the file description for "ndp049.dat" on pages 11-13.

* SAS data retrieval routine to read the file named "ndp049.dat";

* .
’

DATA NDP049;

INFILE 'ndp049.dat';

IF _N =1 THEN INPUT ////// CMONTH $ 1-2 CDAY $ 4-5 CYEAR $ 7-8
NSAMP $ 11 @14 LOCN $CHAR26. @42 LAT $CHARS. @53 LON SCHARL1.
AMONTH $ 66-67 ADAY $ 69-70 AYEAR $ 72-73 AFLAG $ 75
@78 CONC 5.3 @85 C13MEAS 6.2 OFLAG $ 92 @95 C13CORR 6.2
AVCODE $ 102-103;

ELSE INPUT CMONTH $ 1-2 CDAY $ 4-5 CYEAR $ 7-8 NSAMP $ 11
@14 LOCN $CHAR26. @42 LAT $CHARY9. @53 LON $CHAR11.

AMONTH $ 66-67 ADAY $ 69-70 AYEAR $ 72-73 AFLAG $ 75
@78 CONC 5.3 @85 C13MEAS 6.2 OFLAG $ 92 @95 C13CORR 6.2
AVCODE $ 102-103;

FILE 'output';

PUT CMONTH 1-2 CDAY 4-5 CYEAR 7-8 NSAMP 11 @14 LOCN S$CHAR26.
@42 LAT $SCHARY9. @53 LON $CHAR11l. AMONTH 66-67 ADAY 69-70
AYEAR 72-73 AFLAG 75 @78 CONC 5.3 @85 C13MEAS 6.2 OFLAG 92
@95 C1l3CORR 6.2 AVCODE 102-103;

RUN;
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Table 1. CONTENT, SIZE, and FORMAT of DATA FILES

File number and Logical File Block Record
name records size in kB size! length
1. ndp049.des 555 45.0 8000 80
2. ndp049.for 31 25 8000 80
3. ndp049.sas 18 1.5 8000 80
4. ndp049.dat - 207 215 8000 103
Total: 811 70.5

! The block size pertains only to files on magnetic tape.
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APPENDIX A.

Carbon-13 Isotopic Abundance and Concentration of Atmospheric Methane
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Reprint of Pertinent Literature

Isotopic abundances in the atmosphere and sources, by C.M. Stevens. 1993.
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Chapter 4

Isotopic Abundances in the Atmosphere and Sources

C.M. STEVENS

Chemical Technology Division, Argonne National Laboratory, Argonne, IL 60439

1. Introduction

The ultimate goal of isotopic studies of atmospheric CH, is to contribute
to the understanding of the atmospheric CH, cycle by determining the relative
fluxes from various categories of sources and the causes of the increasing
concentration (Stevens and Engelkemeir, 1988; Quay et al.,1988; Wahlen et al.,
1989). Because the large number of generic anthropogenic source types makes
it impossible to determine their relative strengths based on carbon-13 data alone,
Stevens and Engelkemeir (1988) and Craig et al. (1988) used the isotopic data
to calculate the flux of the source with the greatest uncertainty, namely biomass
burning, making use of the estimated fluxes for the other sources from emission
inventories. This method determined the flux and isotopic composition of the
natural sources from the concentration and isotopic composition of CH, in old
polar ice cores assuming the same lifetime as now. The lifetime was mostly
determined by the fluxes based on the emissions inventories. This approach does
not use the lifetime as a constraint nor contribute to the knowledge of the major
sources, which have significant uncertainties in the estimates based on emissions
inventories. A better approach is to start with the constraint of the lifetime value
based on the methyl chloroform cycle (see Mayer et al,, 1982; Khalil and
Rasmussen, 1983; Prinn et al.,, 1987; Cicerone and Oremland, 1988). Then it is
possible to calculate the fluxes of the two most isotopically different sources,
providing an estimate based on emissions inventories for one of the
anthropogenic sources is used as a constraint. A source ischosen that introduces
the least error, namely landfills, which is one of the smallest and has an isotopic
composition closest to the average.
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Whiticar (this volume) discusses the overall cycles of CH, formation from
the fundamental standpoint of the biogenic and thermogenic pathways and the
isotopic fractionation effects at all stages from source generation to loss
processes. The diverse and variable conditions for these fractionation effects
hinder the isotopic characterization of the various generic sources and therefore
the determination of a budget by this method. Examination of the measured
values of the CH, produced by the various generic sources except fossil fuel .
sources (see Table 2) shows that they seem to fall in a narrow enough range to
permit solving the budget with the practical approach of using these values
directly, bypassing the fractionation effects of the formation pathways.

The following sections will summarize the knowledge about the flux
strengths of the major anthropogenic sources using only the carbon isotopic
results. Use is made of the carbon-14 results for the flux of "dead" CH, from
fossil fuel sources as reported by others; the application of deuterium isotopic
data to the atmospheric CH, is mentioned but not discussed in detail. The
average measured isotopic compositions of the CH, produced by the various
generic sources and released to the atmosphere are used to make up a budget
whose isotopic composition is constrained to agree with the value determined
from the atmospheric composition modified by the fractionation effect of the
atmospheric removal process. The most recent determination of the kinetic
isotope effect of the reaction CH, + OH (Cantrell et al,, 1990) is used. The
results of calculations for the determination of the relative fluxes of the generic
sources are shown subject to conditions for the lifetime. Measurements of the
isotopic temporal trends, when considered with the constraints for the unequal
distribution between hemispheres of the anthropogenic fluxes, lead to estimates
of large increasing fluxes from biomass burning in the southern hemisphere and
from natural fluxes in the northern hemisphere.

2. Isotopic composition of the sources
Table 1 lists the categories of the major sources of atmospheric CH, and
the averages of the measured values of §1°C reported by several laboratories.
Table 2 lists the measurements of 6C for the anthropogenic sources and

the average values and 1 standard deviation (SD). These uncertainties were
generally about + 0.2 %o, except in the case of rice (+ 0.05). The uncertainty
for the value for rice has been made greater, + 0.2 %o, to reflect an uncertainty
from the lack of samples in the principal global rice growing areas. The
uncertainty for the 6'>C of CH, from fossil fuels has been increased ( 0.4 %o)
from the indicated SD (% 0.2 %o) of the measured values because of the very
wide spread in the values and the uncertain distribution of a global emissions
inventory. The non-anthropogenic source, sometimes called the "natural source,”
is not directly related to man’s activities and consists of natural wetlands of all
types, forest and savanna fires caused by lightning, oceans and lakes, any possible
leakages from natural gas deposits, and termites. Natural wetlands constitute the
major natural source. |

B-4



Table 1. The carbon-13 isotopic composition of the sources of atmospheric CH,. The
uncertainty is estimated at = 0.2 %o, except (a), which is * 0.4 %o.

Source 8¢
Natural (all non-anthropogenic) -56.7
Rice Paddies ~64
Herbivores —60
Landfills =52
Natural Gas ~43 (a)
Coal Mining -37(a)
Biomass Burning ~-22

Table 2. The carbon isotopic compositions of the anthropogenic sources of

atmospheric CH,.

Source Method and Mean 6'3C and Reference
number of samples range (%o)
RICE PADDIES
California Inversion (4) -67 (-66 to -68) Stevens and
Engelkemeir, 1988
Louisiana Flux Chamber (8) -63.2 + 2.9 Wahlen et al., 1989
Kenya Flux Chamber (10) -59.4 (-57 to -63)  Tyler et al,, 1988
Vercelli, Italy Flux Chamber (7) -654 % 1.6
Average -63.8 = 1.5 Levin et al,, 1993
RUMINANTS C, Diet
Cattle Fistula (5) -63.7 (-61 to -76)  Rust, 1981
Cattle Barn (1) -61.1 Rust, 1981
Sheep Fistula (2) -68.6 (-67 to -70)  Rust, 1981
Cattle Barn (4) <713+ 4 Wabhlen et al., 1989
Cattle Bag (1) -65.1 = 1.7 Levin et al., 1993
Sheep Bag (1) -70.6 Levin et al., 1993
Goat Bag (1) -65.2 Levin et al., 1993
Average -6.3 + 1.0
RUMINANTS C, Diet
Cattle Fistula (3) -50.3 (-47 to -51)  Rust, 1981
Cattle Barn (1) -45.4 Rust, 1981
Cattle (60-80% C, Bag (3) -55.6 = 14 Levin et al., 1993
diet)
Average S0+3
LANDFILLS
Indiana -50 (-48 to -52) Games & Hayes,
1976
Colorado Flux chamber (2)  -53 (-51t0 -55Z)  Tyler, 1986
Heidelberg Upper layers (1) -52 Levin et al., 1993
Average S22
NATURAL GAS
Thermogenic 20% -38 (-25 to -52) Schoell, 1980
Biogenic 80% -65 (-60 to -70) Rice & Claypool,
1981
Average -43 * 4(a)
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Table 2. The carbon isotopic compositions of the anthropogenic sources of
atmospheric CH,.

Source Method and Mean 513C and Reference
number of samples range (%o)
COAL MINING -37 x4 (-1410  Deines, 1980
~60)
BIOMASS BURNING
Wood fire Plume (3) -27 (=24 to ~32y Stevens &
Engelkemeir, 1988
Grass fire Plume (1) -32 "
Brush fire Plume (2) -26.6 Wahlen et al.,, 1989
Wood fire Plume (1) -26.4 Levin et al., 1993

Table 3 lists the measurements of the isotopic composition of CH, emitted
from or contained in the sediment gases of the various natural wetlands, such as
the arctic tundra, Amazon floodplain, peatlands, Everglades marsh and temperate
marshes, lakes and ponds, and estuaries. However, it would be difficult to

Table 3. The carbon isotopic composition of CH, emitted from or contained in
sediments of various natural wetlands.

Wetlands

Sampling Method

Mean 53C and
Range (%o0)

Reference

Alaska tundra

Flux chamber

-66 (-55 to -T3)

Quay et al., 1988

" Bubbles -62 (-57 to -72) Quay et al., 1988

Canadian tundra Surface 63+ 1.9 Wahlen et al.,
1989

USSR marshes Not specified -64 (-52 to -69) Ovsyannikov &
Lebedev, 1967

New England Mud gases -69 (-57 to -80) Oona & Deevey,

Lakes 1960

New York Surface -58 + 24 Wabhlen et al.,

wetlands 1989

Minnesota peat Inversion -67 (-64 to -71) Stevens &

bog

Amazon River

Kenya papyrus
swamp

Kenya river
Kenya lake

Amazon flood
plain

Flux chamber
Bubbles
Surface

Flux chamber

Flux chamber
Flux chamber
Bubbles, 1985

-66 (-57 to -77)
-66 (-50 to -86)
-64

-51 (-31 to -62)

-54
48 (~44 to -50)
-62 (-47 to -73)
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Table 3. The carbon isotopic composition of CH, emitted from or contained in
sediments of various natural wetlands.

Wetlands

Sampling Method

Mean 63C and
Range (%o0)

Reference

Florida Everglades

Florida, Crescent
Lake

Florida, Mirror
Lake

Florida, Lake Dias
Miss. River Delta

South Carolina
pond

Bubbles, 1987
Dissolved in lakes
Flux chamber
Inversion

Inversion

Sediment bubbles

Flux chamber

-52 (-42 to -60)
-56 (-41 to -66)
-51 (-42 to -73)
-52 (-49 to -56)
-55 (-53 to -58)

-65 (-63 to -70)
-64 (-79 to -71)
-55 (-52 to -56)

-63 (-60 1o -67)
-60 (-59 to -60)
-53 (-51 to -55)

Stevens &
Engelkemeir, 1988

Chanton et al.,
1988

Burke & Sackett,
1986

Florida, Tampa
Bay estuary

Colorado pond

North Carolina
marine basin

IMlinois slough

"

Swamp,
Heidelberg,
Germany

Bubbles

Flux chamber

Flux chamber

Sediment gases

Flux chamber

66 (-63 to -71)

-53 (<52 to -54)
-60 + 2 (summer)

-67 (-66 to -70)
-50 (-49 to -51)

-56 (-55 to -58)
S7Tx2

Tyler, 1986

Chanton &
Martens, 1988

1t

Stevens &
Engelkemeir, 1988

Levin et al., 1993

determine the global average isotopic composition of all of the natural sources
from these data because the relative emission inventories of the contributions
from the various natural wetlands types, as well as other natural sources such as
forest fires, cannot be easily ascertained. A direct measure of this average value
can be taken from the isotopic composition of atmospheric CH, for a time when
anthropogenic emissions were negligible, assuming the makeup of the natural
sources has remained the same. Methane in the air contained in 100- to 300-
year-old ice cores has 813C = -49.6 + 0.7 %o (Craig et al., 1988); this leads to the
average value for all the natural sources at that time of -55.7 %o, after applying
the correction ® = —6.0 for the fractionating factor & = 0.994 (Cantrell et al.,



1990) of the atmospheric loss processes, where ® = (a -1)(1 +10'3813Calm). The
fractionation factor of the atmospheric loss processes is the ratio of the loss rates
of 13CH4 and 12CH4, mainly the relative oxidation rates of the reaction of CH,
by OH radicals. Assuming that the fluxes of all the component natural sources
have not changed in the interim, the value at the present time would be -56.7
%o due to a small correction of —1 %o for the decreasing carbon-13 abundance
of atmospheric CO, caused by contributions from fossil fuel burning (Keeling et

al., 1979; Friedli et al., 1986).
The major natural source is the emission from the natural wetlands. The

isotopic composition of the northern wetlands, including the regions of the arctic
tundra and peatlands and some of the Amazon flood plains and Florida
Everglades, falls in the range —60 to —70 %o with an average of about —65 %o
(Table 3). More enriched values of CH,, up to —50 %o, are observed for some
northern mid-latitude lakes and ponds and some regions of the Amazon and the
Florida Everglades. It is likely that the difference between —57 %o, the average
for all natural sources derived from the atmospheric CH, in old polar ice cores,
and —65 %o, for the major natural wetlands, is at least partially accounted for
by isotopically heavy CH, emissions from natural forest and savanna fires.

The value of —64 %o shown for rice is the average of the measurements
by Stevens and Engelkemeir (1988), Tyler et al. (1988), Wahlen et al. (1989), and
Levin et al. (1993) and is very close to the average value for CH, from the
majority of natural wetlands. For CH, from herbivores the value —60 %o is used,
which is based on the comprehensive study by Rust (1981). The values of —43
%o for natural gas and —37 %o for coal mining are based on the means of the
extensive compilations of Schoell (1980), Deines (1980), and Riee and Claypool
(1981). These values are averages of available data and not weighted for the
geographic flux distributions except for an estimated ratio of thermogenic and
biogenic gas sources. For CH, from biomass burning a value of 8BC = ~22 %o
is used. This value is the weighted average of 80% due to C; plants and trees
with an average isotopic composition of —25 %o (Craig, 1953) and 20% due to
C, plants of tropical savanna fires with 813C = —12 %o. The measured values
show little fractionation by the burning process from the isotopic composition of
the biomass (Stevens and Engelkemeir, 1988; Wahlen et al., 1989). In order to
reduce the number of independent variables, the CH, from rice paddies and
herbivores are combined as a single generic source with an average 813C of —62
%o, based on the emissions inventories of the relative fluxes. The fluxes from
natural gas and coal mining can be combined into one generic fossil fuel source
with an average value of —41 %o, since the isotopic compositions are similar and
both contain 100% “"dead" carbon, i.e., no carbon-14.

3. Isotopic composition of atmospheric methane

Measurements of §>C of atmospheric CH, that have been done by various
groups are listed in Table 4 and plotted in Figure 1. They agree well enough to
determine the average value of the sources but not well enough to compare with
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Table 4. Comparison of measurements of the carbon-13 isotopic composition of
atmospheric CH,; errors are 1 SD with numbers of samples in parentheses.

Laboratory  Year

813C %o Southern

83C %o Northern

Hemisphere Hemisphere

A 1978.5 -47.84 + .05 (4)

1978.8 -47.88 + .14 (7)
" 1980.5 -47.52 + .09 (3) -47.78 * .08 (5)
" 19815 -47.49 = .09 (3) -47.69 = .02 (7)
" 1982.5 -47.35 = .04 (4) -47.74 = 26 (4)
" 1983.25 -47.60 = .05 (20)
" 1983.5 -47.61 = .05 (7)
" 1983.75 -47.61 = .04 (20)
" 1984.2 -47.15 = .15 (1)
" 1984.5 -47.53 * .10 (5)
" 1985.5 -47.66 = .08 (5)
" 1986.25 -47.28 = .06 (11)
" 1986.75 -47.25 * .06 (10)
" 1986.9 -46.71 = .08 (6)
" 1987.5 -47.21 * .10 (6)
" 1988.25 -46.98 = .05 (15)
" 1988.3 -46.49 + .09 (6)
" 1989.25 -47.00 = .10 (7)
" 1989.3 -46.32 + .10 (2)
B 1976.5 -473 = 2 (1)
" 1977.5 -46.9 = 2 (1)
" 1978.5 -46.5 = .2 (1)
" 1986.5 -46.7 = 3 (27)
" 1986.8 -46.0 = 2 (5)
" 1987.5 452+ .3 (2) -46.5 = 2 (11)
" 1988.0 -46.6 = 3 (4)
C 1987 to -47.04 = 2 (5) -47.35 to
" 1989 -47.20 + .13 (208)
D 1985.5 -46.5
E 1989.6 to  -47.14 % .03 (90)

1991.8 )

* A: Stevens, 1988, B: Wahlen et al., 1939, C: Quay et al,, 1988. D: Tyler, 1986. E:

Lassey et al., 1993.

each other for temporal trends or latitude gradients. There may be small real
differences among these values due to different locations of sample collection,
but the main differences are most likely caused by differences in sample
preparation and calibration of the working isotopic standards used in the mass
spectrometric analysis. Accurate calibration is a difficulty inherent in trying to
establish to £ 0.1 %o the absolute accuracy of samples that differ by the large
amount of -47 %o from the Peedee belemnite carbonate used as the common

reference.
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4. Calculation of source budgets

The overall objective is to determine the relative, if not absolute, fluxes of
the five generic types of sources of atmospheric CH,. There are only three
constraints based on measurable quantities of the overall CH, cycle; two of them
are the two mass balance equations for 12CH4 and 13CH4 for the current (1978)
condition of atmospheric CH,.

d(Cs)/dt =3 FEs, -C@, + O)r @)

where C is the atmospheric burden in teragrams, F; the individual fluxes, §; the
isotopic composition of the sources, 5, the average atmospheric isotopic
composition, = the lifetime and © the average fractionation factor of the
atmospheric loss processes (—6.0 %o). A third constraint is the abundance of
14CH, in atmospheric CH,, which determines the fraction of CH, from fossil fuel
sources at 16 to 21% of the total flux in 1987 (Wahlen et al., 1989; Quay et al.,
1991; Lowe et al., 1991). The reference year for these calculations is 1978; back
correcting for the growth rates of 2.75 %/yr of both global natural gas and coal
production (see Figure 2) exceeding the concentration growth by 1.75 %/yr, the
flux from these combined sources in 1978 would have been 13 to 17 % of the
total flux or 60 to 80 Tgfyr if the total flux was 460 Tg/yr for a lifetime of 10
years. The mass balance equations for 1>CH, and B3CH, 100 to 300 years ago,
based on measurements of CH, in old polar ice cores when the concentration was
45% of that in 1978 and representing mainly natural sources (Craig and Chou,
1982; Craig et al., 1988), are important for determining the average isotopic
composition of the natural sources, §1°C = —56.7 %o. The 12CH‘, mass balance
might seem to supply another constraint for the natural flux, but the lifetime at
that time is another unknown, making for no net change in the number of
degrees of freedom. Using the constraints cited above, the solution for the
unknown fluxes is under-determined with an excess of three degrees of freedom,
the unknown lifetime for the ice-core CH, and the fluxes of the following
sources: combined rice and herbivores, landfills, and biomass burning. Assuming
the lifetime at the time the methane was trapped in the polar ice was the same
as now, then the fluxes of two of the sources can be expressed in terms of a third.
This is as far as the calculation of a budget can be done based on carbon isotopic
data alone. To proceed further the emissions inventories estimate for one of the
sources is used. Using the estimate for landfills introduces the least uncertainty.
This estimate is 50 = 20 Tg/yr (Bingemer and Crutzen, 1987). On this basis
Table 5 lists the fluxes calculated for the fluxes of all the sources. These results
show that for a lifetime of ten years the calculated combined fluxes from rice and
herbivores of 110 Tg/yr disagrees by a large amount with the emissions inventory
estimate of 180 = 60 Tgfyr. Also, the values for the natural fluxes based on the
CH, in polar ice cores are much greater than the emissions inventory estimate
by Matthews and Fung (1987). With a lifetime of 8 years, the discrepancy
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Figure 2. The growth rate for the global production of hard coal, natural gas,
and cattle. Production units are based on setting the values for the year
1980 equal to 100 (from United Nations Statistical Yearbooks).

between the calculated values and the emissions inventory estimate becomes
smaller for the combined rice and cattle flux and much larger for the natural
fluxes. Figure 3 shows the calculated flux from the combined rice and herbivores
versus the ratio of the lifetime in 1978 to the lifetime in pre-industrial times for
lifetimes of 8 and 10 years in 1978. If the emissions inventory estimates for the
combined fluxes of rice and herbivores are correct, then the lifetime has been
decreasing since pre-industrial times by as much as 33%. The existing
uncertainties for the lifetime as well as for the emissions inventory estimates of
fluxes from rice and herbivores are the limiting factors in determining the natural
fluxes, or the lifetime in pre-industrial times. There is other evidence that the
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Figure 3. The calculated combined fluxes from rice and. herbivores versus the
ratio of the lifetime in 1978 to the lifetime in pre-industrial times for
lifetimes of 8 and 10 years in 1978.

concentration of tropospheric ozone, the precursor of OH radicals that scavenge
CH,, has been increasing in recent decades as well as in the past century (Logan,
1985; Hough and Derwent, 1990). In the following section on isotopic trends,
other evidence is presented that shows that the sink rate in the northern
hemisphere has been increasing in the past decade.

The flux from biomass burning that is calculated from the isotopic data in
the above treatment falls in the narrow range of 37 to 50 Tg/yr if the flux from
rice and herbivores is in the range of 110 to 178 Tgfyr. This is illustrated in
Figure 4, which gives the fluxes from rice and herbivores versus the flux from
biomass burning for a lifetime of ten years. A higher upper limit for the latter
would seem unlikely since this would lead to unreasonably small fluxes for the
natural sources.




Table 5. The fluxes of the sources of atmospheric CH, in 1978, assuming a constant
lifetime over the age of the ice cores in which the concentration and isotopic composition
were measured and based on the flux from landfills of 50 Tg/yr.

Flux Tgfyr
Source % of  10-year 8-year Estimate by emissions
total lifetime lifetime inventory
Natural 41 189 (a) 236 (a) 100 (b)
Rice +
Herbivores 24 110 146 178 = 54 (c) ranges
Landfills 10.8 50 50 50 = 20 (d) ranges
Fossil Fuel 17+3 78 85 60 (e)
Biomass Burning 7.5 35 50 15 to 71 (f)

a. Lifetime assumed constant. b. Matthews and Fung, 1987. c. Schiitz et al., 1989; Khalil
and Rasmussen, 1991; Crutzen et al, 1986. d. Bingemer and Crutzen, 1987. e.
Holzapfel-Pschorn and Seiler, 1986; Hitchcock and Wechsler, 1972. f. Crutzen and
Andreae, 1990.

250
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Figure 4. The calculated relationship between the combined fluxes from rice and
herbivores and the fluxes from biomass burning for a lifetime of 10 years
and the fluxes of the natural sources undetermined.

The isotopic abundance of deuterium in atmospheric CH, and its sources
provide an additional constraint for a global CH, budget as shown by Wahlen et
al. (1990). Their measurements show the global average 8D for atmospheric CH,
is -82 %o, while 8D for the biogenic CH, from the major wet environments
sources is -290 to -360 %o. The deuterium data provide additional constraints
for calculating a budget of fluxes: first, the 8D of the CH, from wet
environments correlates with the 6D of the local precipitation, which is latitude-
dependent. This makes it possible to distinguish CH, from tropical and arctic

B-14



e .~

wetlands; secondly, the 8D of fossil fuel CH, has a different relative composition
compared to the value for CH, from wetlands than in the case for the carbon
isotopes. The fractionation factor of (a -1) = -0.330 measured by Gordon and
Mulac (1975) for the oxidation of CH,D/CH, by OH radicals seems too large,
leading to an average value for the sources more depleted than the value of the
most depleted source. Wahlen et al. (1990) derives a value of -0.150 to -0.170
based on the enrichment of CH;D in the stratosphere where the concentration
decreases with altitude because of OH oxidation.

5. Temporal trends of the 8'3C ratio in atmospheric methane

The ice core data showed that the isotopic composition remained constant
for 200 years while the concentration had increased from 0.65 to 1.2 ppm 3 to 5
decades ago (Craig et al., 1988). The 2 %o enrichment since then is attributed
mainly to the heavy CH, from biomass burning and fossil fuel sources that must
be increasing more rapidly than the increase in light CH, from rice and cattle.

Figure 5 shows the temporal trend of the carbon-13 isotopic composition
of atmospheric CH, from 1978 to 1989 in both hemispheres. These plots are an
update of earlier data reported by Stevens et al. (1985) and Stevens (1988).
These data consist of analyses of 29 samples in the southern hemisphere (SH)
and 129 in the northern hemisphere (NH), which are presented in this plot as
annual averages. The slopes of these trends are greater by 0.04 %o/yr than
shown in an earlier publication of the same data up to 1987 (Stevens, 1988)
because of a correction factor applied to the results of analyses done in 1983 of
samples collected as far back as 1978 and stored. The oldest of these samples
from 1978 collections were analyzed again five years later in 1988 and showed a
small increase of 513C compared to the 1983 value, averaging 0.2 %o, as well as
slightly higher concentrations. The differences are interpreted as contamination
with isotopically heavier CH, from the walls of the storage cylinders accumulating
over the 5-year interval between analyses, amounting to a correction of -0.04 %o
per year of the interval between collection and analysis of the stored air samples.
This correction makes only a small change in the calculated trends of the isotopic
composition of the sources in each hemisphere because the principal term in this
calculation is the rate of change of the difference between the atmospheric §13C
trends, which is not altered by this correction (see equations 3 and 4 below). The
correction increases the slopes of the trends in both hemispheres somewhat, but
the difference between them remains the same.

The results in Table 4 and Figure 1 show that laboratory B measured a
difference in the isotopic values between hemispheres of 0.7 = 0.3 %o in 1986-87
versus 0.5 +0.2 %o for laboratory A for the same years. The results of Lassey et
al. (1993) (E) showed no change in the §3C of the SH from late 1989 to late
1991 with much smaller uncertainties and many more analyses per year (40 to 50)
than any other group. This does not necessarily conflict with the increasing trend
observed by lab A since the two studies do not overlap, and it is possible that
there could have been 2 change in the trend as happened after 1983 in the NH
data of laboratory A in Figure 5. A decrease in the trend of §!3C in the SH
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would result if there was a significant reduction in biomass burning in the
Amazon in recent years.

During the decade 1978-88 the trend of §13C for atmospheric CH, was 0.14
%olyr in the SH and averaged 0.08 %o/yr in the NH; there was a change in the
slope in the NH after 1983 from 0.054 £0.017 to 0.112 +0.008 %o/yr. The
difference of 0.058 0.019 %o/yr between these trends is more than three times
the standard deviation.

The trends of the average isotopic composition of the source fluxes in each
hemisphere can be derived using a two box model of the atmosphere, with the
mass balance equations for *CH, and '2CH, taking into account the
interhemispheric exchange. They are

Nex(Cs/Cn)[d(8 54 -8n4)/dM]

3)
7 +dC/Cdt +7,Cy/Cs -1]

d8yg/dt = dy,/dt -

Nex(Cn/Cs)[A(85p - Ona)/dt]
7 +dC/Cdt -1 -Cg/Cyl

where 8y, and 8, are 813C of atmospheric CH, in the NH and SH respectively,
8ss and dyg are 813C of the average CH, sources, and Cy and Cg are the
concentrations in the respective hemispheres, 1 and 7,, are the loss rate and
interhemispheric exchange rate. The 13C/!2C ratio of the sources in the SH
increased at an average rate of 0.63 %o/yr for the decade (Figure 6). In that
hemisphere, biomass burning is the major anthropogenic source; rice and cattle
production are estimated at only 20 and 25%, respectively (Khalil and
Rasmussen, 1983), of the global production, while losses from natural gas systems,
coal mining, and landfills are negligible. The increasing trend can most plausibly
be attributed to the increasing fluxes from the isotopically very heavy CH, from
biomass burning associated with the rapid deforestation in that hemisphere in
recent decades. The magnitude of the isotopic trend gives a quantitative measure
of the rate of increase of biomass burning in the southern hemisphere from the

Q)

relationship

Fgpld(8gy)/dt]
(8pp -0 avc) )
= 3.5Tglyr?

dFBB/dt =

where Fgp is the flux from biomass burning in the southern hemisphere, Fgy the
total flux in the southern hemisphere of ca. 180 Tg/yr, and 8gp, the isotopic
composition for CH, from biomass burning, -22 %o. This rate would be 0.2
Tg/yr? greater taking into account the increasing rates (1 to 2%/yr) of the small
fluxes of light CH, from rice and cattle in this hemisphere. Since the increasing
global concentration of atmospheric CH, is 1 %/yr (Blake and Rowland, 1988;
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Khalil and Rasmussen, 1990) and the global flux is about 500 Tg/yr, the
increasing fluxes from biomass burning in the southern hemisphere account for
50% of the increasing concentration and must be its leading cause, assuming the
other 50% is due to increasing fluxes of all the anthropogenic sources in the
northern hemisphere and the sink rate and fluxes of the natural sources are
constant. Analysis of the trends in the northern hemisphere will show that both
the fluxes of the natural sources and the loss rate are probably increasing;
however, biomass burning in the southern hemisphere is the major anthropogenic
source contributing to the increase in the concentration.

The trend of the 813C of the sources in the northern hemisphere averaged
-0.17 % 0.03 %ofyr over the decade. The slope was -0.36.%ofyr until 1983, when
it changed to +0.02 %o/yr. Table 6 lists the calculated average rate of change for
the decade based on estimates of the rates of growth of the isotopically light and
heavy CH, fluxes of the anthropogenic sources in this hemisphere as +0.02 to
+0.08 %o/yr; the measured trend is significantly different by -0.19 to -0.25 oofyr.
The disparity with the average measured trend is too large to be explained by
uncertainties in the factors involved in the calculation, namely, rates of growth
and fluxes. The difference implies that there was a much greater increase in the
fluxes of isotopically light CH, than can be reasonably accounted for by the
increases in the production of rice and cattle, the only light anthropogenic
sources. A plausible explanation is that the fluxes of the natural sources were
changing (i.e., some combination of increasing light CH, or decreasing heavy CH,
fluxes). The former possibility seems more likely because the temperate zone
wetlands in the subarctic regions of the NH account for a major fraction of the
global natural sources (Matthews and Fung, 1987) and produce light CH, (Quay

Table 6. The calculated contribution of the increasing fluxes of the anthropogenic
sources to the trend of the average isotopic composition of the sources for the northern
hemisphere from 1978 to 1989 and comparison with the measured change.

Source Flux Growth (513C; - 61°C,y) dBc)ydt
(Tglyr) _ Rate (%iyr) (%0) (%olyr)
Rice 80 051t 1.0?2 -12 -0.016 to
Cattle 68 0.6 -8 -0.032?
Landfilis 50 2.0 (a) +2 —0.009
Fossil Fuel 69 2.75 +12 +0.003
Biomass 20 (b) 0to2(a) +22 +0.06
Burning +0 to 0.04
Calculated Total = +0.02 to +0.08 %o/yr Measured rate = -0.17 %Zofyr

DIFFERENCE = -0.19 t0 -0.25 %ofyr

The indicated difference corresponds to 4 to 6 Tg/yr? in the rate of increase of a flux of
CH, having 8"*C = -65 %so.

a. Assumed rate equals population growth.

b. Flux in the northern hemisphere assumed to be half of the lower limit of the range
calculated for biomass burning shown in Figure 3, 40 Tgfyr.
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etal., 1988). There was an increase in global temperature from 1975 to 1982 that
could have caused increases in fluxes from these wetlands (Harriss, 1989), as well
as increasing fluxes from rice paddies that were not accounted for by increasing
acreage. The change in slope for the NH in 1983 coincides with a decrease in
the slope of the global concentration trend after 1983 (Khalil and Rasmussen,
1990); thus, for the two phenomena to be caused by the same event would
require a relatively rapid change over a few years of either a decrease of
isotopically light fluxes or an increase in the loss rate. Based on the ratio of the
change in slope of the isotopic trend to the change in slope of the concentration
trend, the former possibility is more likely. This is further supported by the
evidence of a pronounced cooling of 1° C during 1984-85 for the northern
temperate zone (Angell, personal communication), which might have caused
decreased fluxes from these northern wetlands and the change in the slope of the
isotopic trend observed after 1983. The trend of the isotopic composition of
atmospheric CH, might be a simple indicator of average temperature trends in
the regions of the northern temperate zone wetlands. There is evidence that the

arctic regions have undergone amplified warming (Lachenbruch and Marshall,
1986), which is predicted in models of climate change. Continuous monitoring

of the isotopic trends in both hemispheres over the coming decades might be a
means of indicating these changes. The results of the trend data show increasing
fluxes of biomass burning in the SH of 3.5 Tg/yr and increasing light CH, fluxes
in the NH of 4.2 Tg/yr. Adding these to the increasing fluxes from the other
anthropogenic sources from increasing production of rice (1.0 Tg/yr), cattle (0.4
Tg/yr), and fossil fuel (1.7 Tg/yr) gives a total of 10.8 to 15.1 Tgfyr, or two to
three times the total based on the increasing concentration of 1 %fyr for an
annual flux of 460 Tg/yr in 1978. From this it is deduced that the loss rate must
be increasing by about 1 to 2 %/yr.

6. Summary

Carbon isotopic data have been used to elucidate three features of the
atmospheric CH, cycle: (1) the magnitude of the fluxes from the combined rice
and cattle source and from biomass burning, (2) annual rates of change for the
fluxes of biomass burning in the SH and natural wetlands in the NH, and (3)
indirect evidence of changes in the loss rate.

The sources of atmospheric CH, have been divided into five categories
(Table 5) based on a combination of similar isotopic composition or source
characteristics. The fraction of the annual flux due to fossil fuel sources can be
determined from carbon-14 measurements. The flux of the natural source is
based on the concentration of CH, in pre-industrial times as measured in polar
ice cores with the caveat of possible changes in the lifetime. Taking the flux of
the less important source of landfills based on emissions inventory data, then the
carbon-13 data are limited to the determination of the ratio of the fluxes of the
two remaining and isotopically different sources, namely those of heavy CH, from
biomass burning and light CH, from the combined sources of rice paddies and
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ruminants. This ratio is subject to the possibility of changes in the lifetime
(increasing loss rate) as shown in Figures 3 and 4.

The different isotopic trends for the two hemispheres are analyzed with the
following conclusions: The isotopic composition of the overall sources in the
southern hemisphere is becoming heavier and is most likely due to heavy CH,
from the only important anthropogenic source in this hemisphere, burning of
biomass, which has been increasing rapidly in recent decades in this hemisphere.
The northern hemisphere showed an increasing net depletion of 13CH4 of the
source CH, during the past decade after taking account of increasing
anthropogenic fluxes, as well as an abrupt increase of 13CH4 in 1984-85. These
changes are interpreted as caused by changing emissions of the isotopically light
CH, from the natural northern wetlands as well as rice paddies due to climate
changes.

Finally, there are indications from both the budget calculations and trend
results that the sink rate has been increasing. Because of these important
findings, especially the possibility of the natural fluxes changing with climate
change, there should be continuing measurements of the isotopic trends in both
hemispheres. It would be best to have these analyses for both hemispheres done
by the same laboratory using the same processing techniques and isotopic
measurement standards in order to avoid the difficult calibration problems
between different laboratories.
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